Clinical UM Guideline


Subject:Neuromuscular Stimulation in the Treatment of Muscle Atrophy
Guideline #:  CG-DME-03Current Effective Date:  10/14/2014
Status:ReviewedLast Review Date:  08/14/2014

Description

This clinical guideline addresses the use of neuromuscular stimulation (also known as neuromuscular electrical stimulation or NMES), which is the application of electrical stimulation for the treatment of muscular atrophy when the nerve supply to the muscle is intact.

When subjected to insufficient use or exercise, muscles atrophy, resulting in a loss of strength and mass. Muscle atrophy may also occur when the limbs are immobilized after injury or surgery. NMES stimulates the motor nerves with electrical currents, which generate muscle contractions to reverse muscle atrophy. When nerve innervation is intact, NMES promotes re-innervation and slows the development of disuse atrophy, relaxes muscle spasms, and increases voluntary muscle control. The intensity and frequency of stimulation can vary based on the level of muscular function and treatment response.

NMES differs from transcutaneous or percutaneous electrical nerve stimulation (TENS, PENS), in that NMES stimulation is directed to the motor nerves and TENS/PENS is directed to the sensory nerves.

 Note:  Please see the following related document(s) for additional information:

Clinical Indications

Medically Necessary:

FDA approved neuromuscular stimulator devices are considered medically necessary when prescribed for the following indications when muscular atrophy is present in the setting of an intact nerve supply to the muscle, including brain, spinal cord and peripheral nerves:

Not Medically Necessary: 

Neuromuscular stimulation is considered not medically necessary for:

Coding

The following codes for treatments and procedures applicable to this document are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

HCPCS 
E0731Form-fitting conductive garment for delivery of TENS or NMES (with conductive fibers separated from the patient's skin by layers of fabric)
E0745Neuromuscular stimulator, electronic shock unit
  
ICD-9 Diagnosis[For dates of service prior to 10/01/2015]
 All diagnoses
  
ICD-10 Diagnosis[For dates of service on or after 10/01/2015]
 All diagnoses
Discussion/General Information

Monaghan and colleagues (2010) conducted a review of the available literature to assess the effectiveness of NMES as a means of improving quadriceps strength before and after total knee replacement. Two studies, comparing NMES and exercise, and exercise alone pre- and post-op, were identified and included in the review. These two studies reported no significant differences between the NMES and control group  for maximum voluntary isometric torque or endurance. In one study, there was significantly better quadriceps muscle activation in the exercise and neuromuscular stimulation group compared with the exercise group alone. This difference was statistically significant at 6 weeks of follow-up, but not at 12 weeks. Raw data scores were not reported by study authors and hence, further analysis of both studies was not possible. Both studies were characterized by several weaknesses, which conferred a high degree of bias. The authors concluded that the available studies for this review preclude any conclusions for the clinical efficacy and safety of NMES for quadriceps strengthening pre- and post-op total knee replacement.   

Stevens-Lapsley and colleagues (2012) published results from a small clinical trial studying initiation of quadriceps muscle NMES, as an adjunct to standard rehabilitation, with outcomes assessed 48 hours after total knee replacement. Sixty-six subjects were randomly assigned to the control group (standard rehabilitation) or the treatment group (standard rehabilitation plus quadriceps NMES). Muscle strength, functional performance, and self-report measures data were collected pre- and post-surgery and at 3.5, 6.5, 13, 26 and 52 weeks after total knee replacement. Significant improvements in the NMES group were seen post-op at 3.5 weeks for quadriceps and hamstring muscle strength, functional performance, knee extension, and active range of motion. At 52 weeks, the statistically significant differences between groups for most outcome measures were no longer observed , but improvements with NMES were still significant for quadriceps and hamstring muscle strength, functional performance, and some self-report measures. The authors concluded that early administration of NMES effectively reduced the loss of quadriceps muscle strength and improved functional performance following total knee replacement. The effects were most pronounced and clinically meaningful within the first month after surgery, but persisted through 1 year after surgery. The authors acknowledged a few study limitations; treatment volume was not matched for both study arms and NMES was added to the standard of care treatment, which does not allow the evaluation of the efficacy of NMES alone. Also, testers were not blinded during testing. The authors also stated that further research evaluating early intervention after total knee replacement is warranted.

Broderick and colleagues (2010) studied the impact of bedrest on decreased circulation. They proposed that lack of activation of the calf muscle pump during this resting period leads to venous stasis, which may result in deep vein thrombosis (DVT). A pilot study was conducted to investigate the effects of 4 hours of bed rest on lower limb hemodynamics of healthy subjects. Researchers also investigated the effects of electrically elicited contractions of the calf muscles on bed rest. Outcome measurements included popliteal vein blood flow and heart rate in two groups; one without stimulation and one with stimulation. The resting group without stimulation experienced a significant decline in popliteal venous blood flow of approximately 47% and an approximate13% decrease in heart rate. The stimulated group maintained a significantly higher venous blood flow and heart rate. The authors proposed that electrically elicited calf muscle contractions significantly improve lower limb blood flow and can alleviate some debilitating effects of bed rest. Further randomized studies are needed to substantiate this pilot study.

Palmieri-Smith and colleagues (2010) studied the impact of NMES on quadriceps muscle strength and activation in women with mild and moderate knee osteoarthritis. Thirty women with radiographic evidence of knee osteoarthritis were randomized into a treatment and no treatment group. Those in the intervention group received NMES 3 times a week for 4 weeks. The effects of NMES on quadriceps muscle strength were evaluated at 1 and 12 weeks after completing treatment. No improvement in muscle strength was seen in the treatment group.

Lin and colleagues (2011) investigated the long-term efficacy of NMES to enable motor recovery in the upper extremities of post-stroke individuals. A total of 46 subjects were randomized into a NMES treatment group or a control group. All subjects participated in a standard rehabilitation program. Those in the NMES group received NMES for 30 min, 5 days a week, for 3 weeks. Measurements were recorded before treatment, at the 2nd and 3rd week of treatment, and 1, 3 and 6 months after treatment ended. The Modified Ashworth Scale (MAS) for spasticity, the upper extremity section of the Fugl-Meyer motor assessment, and the Modified Barthel Index (MBI) were used to assess the results. Significant improvements were found in both groups and persisted 1 month after treatment had been discontinued.  At 3 and 6 months after treatment was discontinued, the average scores in the NMES group were significantly better than those in the control group. The authors acknowledged several limitations of the study, including its small size and lack of a blinded sham group. They concluded that additional studies, using similar stimulation protocols with a larger sample, are needed to assess the value of NMES to restore functionality after stroke.

A literature review by Maddocks and colleagues (2013) reported on 11 studies involving a total of 218 participants with chronic obstructive pulmonary disease (COPD), chronic heart failure, and thoracic cancer. The primary outcome measure was evaluating the effectiveness of NMES for improving muscle strength, and secondary measures included the safety of NMES, muscle mass, exercise capacity, breathlessness, and health-related quality of life (HR-QOL). The authors concluded that NMES appears to improve leg muscle strength, and the ability to exercise; however, these results need to be confirmed in larger clinical trials.

Malhotra and colleagues (2013) conducted a single-blind, randomized controlled trial (RCT) to assess the treatment effects of surface NMES on wrist pain, spasticity, and contractures in individuals with no functional use of their arms following stroke. A total of 90 subjects were randomized to either the treatment group (30 minutes of surface NMES to the wrist and finger extensors and 45 minutes of physiotherapy) or the control group (45 minutes of physiotherapy alone). Treatment duration was 6 weeks. Although the treatment appeared to prevent pain and deterioration of contractures, there were no statistically significant improvements in stiffness and spasticity.  Statistical analyses of the differences between the treatment and control groups suggest that the prevention of pain and contractures may not have been clinically meaningful. Other limitations include lack of patient-relevant outcome measures to assess the degree of change in functional use of participant's arms and lack of follow-up. 

Clinical trials for NMES are currently in progress for other indications, such as muscle atrophy secondary to severe COPD, muscle strengthening for cerebral palsy, strengthening of the quadriceps, pre- and post total knee replacement, reversing muscle atrophy in rheumatoid arthritis, as well as using NMES to improve circulation.

References

Peer Reviewed Publications:

  1. Broderick BJ, O'Briain DE, Breen PP, et al. A pilot evaluation of a neuromuscular electrical stimulation (NMES) based methodology for the prevention of venous stasis during bed rest. Med Eng Phys. 2010; 32(4):349-355.
  2. Hsu SS, Hu MH, Wang YH, et al. Dose-response relation between neuromuscular electrical stimulation and upper-extremity function in patients with stroke. Stroke. 2010; 41(4):821-824. 
  3. Lin Z, Yan T. Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke. J Rehabil Med. 2011; 43(6):506-510.
  4. Malhotra S, Rosewilliam S, Hermens H, et al. A randomized controlled trial of surface neuromuscular electrical stimulation applied early after stroke: effects on wrist pain, spasticity and contractures. Clin Rehabil. 2013; 27(7):579-590.
  5. Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C, Sowers M. A clinical trial of neuromuscular electrical stimulation in improving quadriceps muscle strength and activation among women with mild and moderate osteoarthritis. Phys Ther. 2010; 90(10):1441-1452.
  6. Stevens-Lapsley JE, Balter JE, Wolfe P, et al. Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: a randomized controlled trial. Phys Ther. 2012; 92(2):210-226.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. Centers for Medicare and Medicaid Services (CMS). National Coverage Determination: Neuromuscular electrical stimulation (NMES). NCD #160.12. Effective October 1, 2006. Available at: http://www.cms.gov/medicare-coverage-database/overview-and-quick-search.aspx. Accessed on June 20, 2014.
  2. Centers for Medicare and Medicaid Services. National Coverage Determination: Supplies used in the Delivery of Transcutaneous Electrical Nerve Stimulation (TENS) and Neuromuscular Electrical Stimulation (NMES). NCD #160.13. Effective July 14, 1988. Available at: http://www.cms.gov/medicare-coverage-database/overview-and-quick-search.aspx. Accessed on June 20, 2014.
  3. Maddocks M, Gao W, Higginson IJ, Wilcock A. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev, 2013;(1):CD009419.
  4. Monaghan B, Caulfield B, O'Mathúna DP. Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement. Cochrane Database Syst Rev, 2010;(1):CD007177.
  5. National Institutes of Health (NIH). Clinical Trials: Neuromuscular Electrical Stimulation (NMES). Available at: http://clinicaltrials.gov/ct2/results?term=neuromuscular+electrical+stimulation+%28NMES%29. Accessed on June 20, 2014.
Index

Disuse Atrophy
Muscle Atrophy
Neuromuscular Stimulation

History
StatusDateAction
Reviewed08/14/2014Medical Policy & Technology Assessment Committee (MPTAC) review. Updated Description, Discussion/General Information, and Reference sections.
Reviewed08/08/2013MPTAC review. Updated Discussion/General Information and References.
Reviewed08/09/2012MPTAC review. No change to criteria. Discussion/General Information and References updated.
Reviewed08/18/2011MPTAC review. No change to criteria. Coding, Discussion/General Information and References updated.
Reviewed08/19/2010MPTAC review. No change to criteria. Place of Service deleted. Background and References updated.
Reviewed08/27/2009MPTAC review. References updated.
Reviewed08/28/2008MPTAC review. References updated.
Reviewed08/23/2007MPTAC review. References updated.
Revised09/14/2006MPTAC review. Revision addressed use of neuromuscular stimulation garment. References updated.
Reviewed06/08/2006MPTAC review. References and coding updated.
 11/22/2005Added reference for Centers for Medicare and Medicaid Services (CMS) – National Coverage Determination (NCD).
Revised07/14/2005MPTAC review. Revision based on Pre-merger Anthem and Pre-merger WellPoint Harmonization.
Pre-Merger OrganizationsLast Review DateDocument NumberTitle
Anthem, Inc.N/A  
Anthem BCBSN/A  
WellPoint Health Networks, Inc.06/24/2004NoneNeuromuscular Stimulation in the Treatment of Muscle Atrophy