Clinical UM Guideline


Subject:Pneumatic Compression Devices for Lymphedema
Guideline #:  CG-DME-06Current Effective Date:  01/14/2014
Status:RevisedLast Review Date:  11/14/2013

Description

Pneumatic compression devices for the treatment of lymphedema consist of an inflatable garment for the arm or leg and an electrical pneumatic pump. The garment is intermittently inflated and deflated with cycle times and pressures that vary between devices. Pneumatic compression devices are used in clinics or can be purchased or rented for home use. This document addresses the home use of pneumatic compression devices.

Note:  This document addresses devices for the treatment of lymphedema only.  Pneumatic devices used in the treatment or prevention of venous thrombosis, venous insufficiency with refractory edema or ulceration, and therapy for musculoskeletal injury are NOT addressed in this document.

Clinical Indications

Medically Necessary: 

Single or multi-chamber non-programmable pneumatic compression devices are considered medically necessary when:

Single or multi-chamber programmable (e.g., calibrated gradient pressure) pneumatic compression devices are considered medically necessary when criteria above for a non-programmable pneumatic compression device are met and either a) or b) below are met:

  1. A single or multi-chamber non-programmable pneumatic compression device has been tried for a minimum of 3 months, there is documentation of compliance with treatment with the non-programmable pneumatic compression device, and the records provide objective documentation that lymphedema has progressed;
    OR
  2. There is clear documentation of a medically appropriate reason the non-programmable device could not be used.

Not Medically Necessary:

Single or multi-chamber programmable or non-programmable pneumatic compression devices are considered not medically necessary when the criteria above have not been met.

Two-stage* multi-chamber programmable pneumatic compression devices are considered not medically necessary.

*Note: Two stage devices involve an initial programmed compression of the chest and/or trunk, the "preparatory stage," followed by a second programmed compression of the affected limb(s), the "drainage" stage. 

The use of chest and trunk compression garments (appliances) with a pneumatic compression device  in the treatment of lymphedema is considered not medically necessary.

Coding

The following codes for treatments and procedures applicable to this document are included below for informational purposes.  Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy.  Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member

HCPCS 
 Single chamber pump and appliances
E0650Pneumatic compressor, non-segmental home model
E0655Non-segmental pneumatic appliance for use with pneumatic compressor, half arm
E0660Non-segmental pneumatic appliance for use with pneumatic compressor, full leg
E0665Non-segmental pneumatic appliance for use with pneumatic compressor, full arm
E0666Non-segmental pneumatic appliance for use with pneumatic compressor, half leg
  
 Multi-chamber pump and appliances
E0651Pneumatic compressor, segmental home model without calibrated gradient pressure
E0667Segmental pneumatic appliance for use with pneumatic compressor, full leg
E0668Segmental pneumatic appliance for use with pneumatic compressor, full arm
E0669Segmental pneumatic appliance for use with pneumatic compressor, half leg
  
 Multi-chamber programmable pump and appliances (one stage or two stage)
E0652Pneumatic compressor, segmental home model with calibrated gradient pressure
E0656Segmental pneumatic appliance for use with pneumatic compressor, trunk
E0657Segmental pneumatic appliance for use with pneumatic compressor, chest
E0670Segmental pneumatic appliance for use with pneumatic compressor, integrated, 2 full legs and trunk
E0671Segmental gradient pressure pneumatic appliance, full leg
E0672Segmental gradient pressure pneumatic appliance, full arm
E0673Segmental gradient pressure pneumatic appliance, half leg
  
ICD-9 Diagnosis[For dates of service prior to 10/01/2014]
174.0-174.9Malignant neoplasm of female breast
175.0-175.9Malignant neoplasm of male breast
198.81Secondary malignant neoplasm of breast
233.0Carcinoma in situ of breast
238.3Neoplasm of uncertain behavior; breast
239.3Neoplasm of unspecified nature; breast
457.0Postmastectomy lymphedema syndrome
457.1Other lymphedema
757.0Hereditary edema of legs
997.99Complications affecting other specified body systems, not elsewhere classified; other [when specified as lymphedema]
  
ICD-10 Diagnosis[For dates of service on or after 10/01/2014]
C50.011-C50.929Malignant neoplasm of breast
C79.81Secondary malignant neoplasm of breast
D05.00-D05.92Carcinoma in situ of breast
D48.60-D48.62Neoplasm of uncertain behavior of breast
D49.3Neoplasm of unspecified behavior of breast
I89.0Lymphedema, not elsewhere classified
I97.2Postmastectomy lymphedema syndrome
I97.89Other postprocedural complications and disorders of the circulatory system, not elsewhere classified [when specified as lymphedema]
Q82.0Hereditary lymphedema
  
Discussion/General Discussion

Lymphedema is characterized by swelling of subcutaneous tissues due to the accumulation of excessive lymph fluid resulting from impairment of the normal clearing function of the lymphatic system and/or from an excessive production of lymph.  Lymphedema is divided into two broad classes according to etiology. Primary lymphedema is a relatively uncommon, chronic condition due to congenital absence of lymph vessels and nodes, and may be due to Milroy's Disease.  Secondary lymphedema, which is much more common, results from the destruction or damage of formerly functioning lymphatic channels.  Examples include radical surgical procedures with removal of regional groups of lymph nodes (e.g., after radical mastectomy), post-radiation fibrosis, and spread of malignant tumors to regional lymph nodes with lymphatic obstruction.  Treatment for lymphedema may include mechanical measures (e.g., compression garments, bandaging, manual massage, pneumatic compression devices), drugs, and in rare cases, surgery.

Pneumatic compression devices are approved under the U.S. Food and Drug Administration's (FDA's) 510(k) process. They are classified as Class II devices, cardiovascular therapeutic devices, and compressible limb sleeves.  Pneumatic compression devices, also known as lymphedema pumps, are used to simulate muscle action in the extremities to stimulate lymph and blood circulation with the goal of decreasing edema due to accumulation of lymphatic fluid.  These devices involve the use of sleeve or wrap-like garments which contain one or several inflatable air chambers.  Attached to the garment is a control unit which controls the flow of compressed air into the air chamber.  During treatment the air chambers inflate in a distal to proximal fashion, squeezing the body in such a way as to encourage lymphatic fluid to flow back to the heart.  Some devices come with control units that are programmable, allowing variation in the duration and frequency of the inflation cycles, as well as the degree of compression in individual air chambers in the garment.  The ability to vary different aspects of this type of treatment has been suggested as a method of optimizing the treatment process, but there is no evidence to demonstrate the superiority of programmable devices compared to non-programmable devices. In a systematic review published in 2012, Oremus et al. reviewed 44 studies evaluating the use of various conservative therapies for the treatment of secondary lymphedema, most of which involved upper limb lymphedema secondary to breast cancer.  They reported that the available evidence is of poor quality and that significant heterogeneity made between-study or between-therapy comparisons impossible.  They concluded that there is currently no evidence to demonstrate the superiority of any one therapy for lymphedema.

A limited number of small studies have been published.  Szuba and colleagues (2002) reported on two small randomized controlled trials (RCTs) (n=23 and 27 respectively).  The results of these studies showed that during initial treatment, standard therapy plus pneumatic compression for treatment-naive subjects resulted in significant limb volume reduction compared to standard care alone.  However, they found that during the maintenance period, these benefits did not persist in some individuals.  In contrast to these findings, earlier small, randomized controlled studies by Johansson et al (1998), and Dini and colleagues (1998) found no significant difference between pneumatic pump therapy when compared to either no care or standard care groups. 

More recent studies reported similar results.  Gurdal and colleagues (2013) reported the results of a RCT involving 30 subjects randomized to receive one of two different combination treatments for lymphedema.  Fifteen subjects received manual lymphatic drainage (MLD) and compression bandage combination (Group 1).  The remaining 15 subjects were treated with intermittent pneumatic compression (IPC) plus self-lymphatic drainage (SLD) (Group 2).  Both groups received treatment for 3 days a week, every other day, for 6 weeks.  Arm circumferences were measured before treatment and at 1, 3, and 6 weeks.  Quality of life was measured using the EORTC-QLQ and ASES evaluation tools before and after 6 weeks of treatment.  Both groups had significant decrease in total arm volume (12.2% decrease in Group 2 and 14.9% decrease in Group 1(p<0.001), but no significant difference was found between the two groups (p=0.582).  Similarly, ASES scores were significantly (p=0.001) improved in both groups without any significant difference between the groups.  The authors did note that while emotional functioning, fatigue, and pain scores were significantly improved in both groups, measures of global health status, functional and cognitive functioning scores appeared to be improved only in patients of group 1.  A similarly designed RCT was reported by Uzkeser et al. in 2013.   In this study, 15 subjects were randomized to receive complex decongestive therapy (CDT) that included skin treatment, MLD, compression bandages, compression garments, and exercise (Group 1).  Another group was randomized to receive CDT in addition to intermittent pneumatic compression therapy (Group 2).  Both groups were treated five times a week for 3 weeks.  Significant benefits were reported for both groups, but no differences between groups were noted.  Given these recent results, large well-designed randomized controlled trials are warranted to better understand the potential impact of this therapy.

Fife and others (2012) conducted an RCT with 36 subjects randomized to receive treatment with either a standard non-programmable multi-chamber pneumatic compression device (n=18) or a programmable, multi-chamber compression device. (n=18).  The latter group included both extremity and partial chest/trunk therapy, while the standard group received only upper extremity therapy. Treatment in both groups was 1 hour a day for 12 weeks.  The authors report that after 12 weeks the percentage edema volume, calculated as the difference between the volume in mL of the treated arm volume compared to the contralateral arm, was significantly better in the programmable therapy group (-29±44% in the programmable group vs. +16±63% for the non-programmable group;  p=0.018).  There were a total of six adverse events reported that were classified as either "possibly" or "definitely" device-related; one in the programmable group and five in the standard group.  No statistics were provided for this difference. It should be noted that edema volume is used as the primary outcome metric in this study.  Data regarding lymphedema symptoms, quality of life, or functional outcomes are not presented.  While this pilot study indicates some potential benefits to the use of programmable devices, the small study population, lack of blinding, and failure to measure clinically relevant outcomes limit the generalizability of this data.  Evidence from larger RCTs or other comparative studies is needed to evaluate whether programmable devices should be used first line as opposed to after failure of a non-programmable device.

Two Stage Devices

Multi-chamber programmable pneumatic compression devices may also function with two-phases.  The first phase, referred to as the "preparatory phase",  compresses the trunk (chest/abdomen).The preparatory phase is designed to prepare the limb for a secondary (drainage) compression phase.  The combination of these two phases (preparation plus drainage) has been proposed as a method to further enhance lymph drainage.

The available evidence addressing the clinical use of two-stage multi-chamber programmable pneumatic compression devices is limited.  In addition to several case reports published in journals not recognized in the National Library of Medicine's PubMed database (Cannon, 2009; Hammond, 2009a, 2009b), there are a few case series and a limited number of RCTs available.  The Ridner (2008) case series initially included 286 participants who underwent treatment with a two stage compression device for 2 months.  Prior to treatment, and 2 months following the initiation of treatment, the subjects were asked to respond to a survey instrument regarding Quality of Life (QOL) and satisfaction with the device.  In addition to methodological flaws such as the use of self reported data, lack of a control group, no blinding and a significant loss to follow-up (36%), the study does not report health-related outcomes, such as limb volume reduction, skin tension and elasticity, and limb heaviness.  

Muluk and colleagues published the results of a prospective case series study involving 196 subjects with lower extremity lymphedema (2013).  The majority (181 of 196) subjects were treated with a two-stage treatment regimen.  Eighty eight percent (n=173) of the subjects experienced a significant reduction in limb volume with 35% reporting a reduction >10%.  Mean limb volume reduction was 1,150 mL or 8% (p < .0001).  Clinician assessment indicated that the majority of patients experienced improvement in skin fibrosis (86%, n=168) and function (77%, n=149).   However, it is not clear what tools were used to make these assessments. 

A randomized controlled cross-over trial which included 10 subjects with unilateral breast cancer-associated lymphedema of the arm compared treatment with a two-stage device vs. self-administered massage (Wilburn, 2006).The authors reported significant improvement in limb volume, mean subject weight, but no significant differences in SF-26 quality of life scores.  There was no comparison to conventional single stage pump therapy in this very small study with a limited follow-up period of only 4 weeks.

A small RCT of two-stage compression therapy has been published.  Ridner and colleagues (2012) studied 42 subjects randomized to receive either upper extremity-only compression treatment (control group; n=21) or extremity plus chest and trunk compression treatment (two-stage therapy) (experimental group; n=21).   Control subjects underwent 30 treatments of 36 minutes each.  The experimental group received 30 treatments of one hour each. The first treatment was supervised in the office, but all subsequent sessions were unsupervised in the home. The authors reported significant improvements with regard to function and anatomical measures in both groups, but no significant differences between groups.

In summary, the available evidence regarding two stage devices published in the peer-reviewed medical literature does not demonstrate that the use of two stage devices improves the net health outcome or is as beneficial as established alternative, such as single stage (non-programmable or programmable) treatment of lymphedema.

References

Peer Reviewed Publications: 

  1. Cannon S. Pneumatic compression devices for in-home management of lymphedema: two case reports. Cases J. 2009; 2:6625.
  2. Dini D, Del Mastro L, Gozza A, et al. The role of pneumatic compression in the treatment of postmastectomy lymphedema. A randomized phase III study. Ann Oncol. 1998; 9(2):187-190.
  3. Fife CE, Davey S, Maus EA, et al. A randomized controlled trial comparing two types of pneumatic compression for breast cancer-related lymphedema treatment in the home. Support Care Cancer. 2012; 20(12):3279-3286.
  4. Gurdal SO, Kostanoglu A, Cavdar I, et al. Comparison of intermittent pneumatic compression with manual lymphatic drainage for treatment of breast cancer-related lymphedema. Lymphat Res Biol. 2012; 10(3):129-135.
  5. Hammond T. Reduction of complications and costs associated with Flexitouch therapy for lymphedema. Open Rehabil J. 2009; 2:54-57.
  6. Hammond T. Can truncal edema be treated with pneumatic compression? LymphLink. 2009; 21(2):12-14.
  7. Johansson K, Lie E, Ekdahl C, Lindfeldt J. A randomized study comparing manual lymph drainage with sequential pneumatic compression for treatment of postoperative arm lymphedema. Lymphology. 1998; 31(2):56-64.
  8. Macdonald JM, Sims N, Mayrovitz HN. Lymphedema, lipedema and the open wound: the role of compression therapy. Surg Clin North Am. 2003; 83(3):639-658.
  9. Muluk SC, Hirsch AT, Taffe EC. Pneumatic compression device treatment of lower extremity lymphedema elicits improved limb volume and patient-reported outcomes. Eur J Vasc Endovasc Surg. 2013; 46(4):480-487.
  10. Oremus M, Dayes I, Walker K, Raina P. Systematic review: conservative treatments for secondary lymphedema. BMC Cancer. 2012; 12:6.
  11. Pappas CJ, O'Donnell TF Jr. Long-term results of compression treatment for lymphedema. J Vasc Surg. 1992; 16(4):555-562.
  12. Ridner SH, McMahon E, Dietrich MS, Hoy S. Home-based lymphedema treatment in patients with cancer-related lymphedema or noncancer-related lymphedema. Oncol Nurs Forum. 2008; 35(4):671-680.
  13. Ridner SH, Murphy B, Deng J, et al. A randomized clinical trial comparing advanced pneumatic truncal, chest, and arm treatment to arm treatment only in self-care of arm lymphedema. Breast Cancer Res Treat. 2012; 131(1):147-158.
  14. Szuba A, Achalu R, Rockson SG. Decongestive lymphatic therapy for patients with breast carcinoma-associated lymphedema. A randomized, prospective study of a role for adjunctive intermittent pneumatic compression. Cancer. 2002; 95(11):2260-2267.
  15. Uzkeser H, Karatay S, Erdemci B, et al. Efficacy of manual lymphatic drainage and intermittent pneumatic compression pump use in the treatment of lymphedema after mastectomy: a randomized controlled trial. Breast Cancer. 2013 Aug 8. [Epub ahead of print]
  16. Wilburn O, Wilburn P, Rockson SG. A pilot, prospective evaluation of a novel alternative for maintenance therapy of breast cancer-associated lymphedema. BMC Cancer. 2006; 6:84.
  17. Zanolla R, Monzeglio C, Balzarini A, Martino G. Evaluation of the results of three different methods of postmastectomy lymphedema treatment. J Surg Oncol. 1984; 26(3):210-213.

Government Agency, Medical Society, and Other Authoritative Publications: 

  1. Agency for Health Research and Quality. Technology Assessments: Diagnosis and Treatment of Secondary Lymphedema. May 28, 2010.  Available at: http://www.ahrq.gov/clinic/techix.htm. Accessed on  August 31, 2013.
  2. Centers for Medicare and Medicaid Services. National Coverage Determination: Pneumatic Compression Devices. NCD #280.6. Effective January 14, 2002. Available at: http://www.cms.hhs.gov/mcd/index_list.asp?list_type=ncd. Accessed on August 31, 2013.
  3. International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2009 Consensus Document of the International Society of Lymphology. Lymphology. 2009; 42(2):51-60.
Index

Flexitouch
LymphaPress Optimal
NormaTec PCD

The use of specific product names is illustrative only. It is not intended to be a recommendation of one product over another, and is not intended to represent a complete listing of all products available.

Document History
StatusDateAction
Revised11/14/2013Medical Policy & Technology Assessment Committee (MPTAC) review. Added new criteria for programmable pump use.  Added note in not medically necessary statement addressing use of two-stage devices. Updated Rationale and Reference sections.
Revised11/08/2012MPTAC review. Added not medically necessary statement to address the use of pneumatic compression devices for the trunk and chest. Updated Discussion and Reference sections.  Updated Coding section with 01/01/2013 HCPCS changes.
Revised08/09/2012MPTAC review. Deleted position statement addressing venous insufficiency, Updated Discussion, Coding, Reference, and Index sections.
 05/22/2012Updated title to add "for Lymphedema" and added note to Description section to clarify scope of document.
Reviewed08/18/2011MPTAC review. No change to position statement.  Updated Coding and Reference section.
Reviewed08/19/2010MPTAC review. No change to position statement.  Updated Discussion and Reference sections.
Reviewed08/27/2009MPTAC review. No change to position statement.  Added LymphaPress Optimal, NormaTec PCD devices to document.  Updated Discussion and Reference sections.
 01/01/2009Updated coding section with 01/01/2009 HCPCS changes.
Revised08/28/2008MPTAC review. Clarified not medically necessary statement. Revised Discussion section.
Revised08/23/2007MPTAC review. Added not medically necessary statement for single or multi-compartment programmable or non-programmable pneumatic compression devices when medically necessary criteria have not been met; updated Reference section.
Reviewed09/14/2006MPTAC review. No change to position; updated reference section.
 11/21/2005Added reference for Centers for Medicare and Medicaid Services (CMS) – National Coverage Determination (NCD).
Revised09/22/2005MPTAC review.  Revision based on Pre-merger Anthem and Pre-merger WellPoint Harmonization.

Pre-Merger Organizations

Last Review DateDocument NumberTitle 
Anthem, Inc. NoneNone 

Anthem BCBS

07/10/2002Memo 115Lymphedema Pumps 

Anthem BCBS

10/29/2004DME.218Pneumatic Compression Devices 
WellPoint Health Networks, Inc.06/24/20049.01.05Lymphedema Pumps