Medical Policy


Subject:Venous Angioplasty with or without Stent Placement
Policy #:  SURG.00122Current Effective Date:  10/14/2014
Status:RevisedLast Review Date:  08/14/2014

Description/Scope

This document addresses venous angioplasty with or without stent placement as a treatment modality for a variety of conditions, including: obstructed hemodialysis access grafts, venous thoracic outlet syndrome, superior vena cava syndrome, Budd-Chiari syndrome, congenital cardiac defects, lower extremity venous congestion and as a method to improve venous flow in chronic cerebrospinal venous insufficiency (CCSVI).

Position Statement

Medically Necessary:

Venous angioplasty (with or without stent placement) is considered medically necessary for treatment of the following conditions:

Investigational and Not Medically Necessary:

Venous angioplasty (with or without stent placement) is considered investigational and not medically necessary for the treatment of multiple sclerosis, chronically occluded iliac veins, ilio-femoral venous thrombosis, and any other conditions not listed above as medically necessary.

Rationale

Stenotic or Thrombosed Arterio-venous Dialysis Access Grafts

The maintenance of thrombosed dialysis access grafts has been a challenging undertaking for many years. Once a dialysis access graft is thrombosed or stenosed, balloon angioplasty has been shown to effectively restore graft function (Beathard, 1992; Beathard 2003; Kanterman, 1995; Pappas 2002). Van Ha (2004) reported that there has been an evolution in the percutaneous treatment of thrombosed dialysis access grafts during the last 20 years allowing for safe and efficacious restoration of flow in thrombosed grafts.

The National Kidney Foundation (NKF) (2006) guideline update for the treatment of arteriovenous graft complications states in regards to stenosis without thrombosis:

Stenoses that are associated with AVGs should be treated with angioplasty or surgical revision if the lesion causes a greater than 50% decrease in the luminal diameter and is associated with the following clinical/physiological abnormalities:

For treatment of thrombosis or associated thrombosis the NKF states:

Each institution should determine which procedure, percutaneous thrombectomy with angioplasty or surgical thrombectomy with AVG revision, is preferable based upon expediency and physician expertise at that center.

Thrombotic Obstruction of Major Hepatic Veins (Budd-Chiari Syndrome)

Data to support angioplasty with or without stent placement for the treatment of Budd-Chiari syndrome consists of multiple retrospective studies or case series of varying size (Fisher, 1999; Han, 2013; Meng, 2011; Pelage, 2003; Qiao, 2005; Zhang, 2003).

In the largest case series, Meng and colleagues (2011) evaluated endovascular treatment of Budd-Chiari syndrome (BCS) in 903 cases at a single Chinese center. The obstruction in the inferior vena cava (IVC) was carried out first, then obliteration or stenosis in the IVC was opened or dilated and a stent was placed. The procedure was reported to be successful in 821 out of 903 cases. Complications included acute renal failure (8cases), hepatic coma (2 cases), and acute heart failure (43 cases). The authors concluded that endovascular treatment has become the treatment of choice for BCS because of its minimal trauma and fast recovery.

More recently, Han and colleagues (2013) evaluated the long-term outcomes of percutaneous recanalization and predictors of patency and survival in a retrospective case series of individuals with BCS at a single Chinese center.  Between July 1999 and August 2010, 177 consecutive cases of primary BCS were treated with percutaneous recanalization and followed up until their last clinical evaluation or death. Percutaneous recanalization was reported as technically successful in 168 of the 177 cases (95%). A total of 51 of the 168 individuals (30%) were treated with percutaneous transluminal angioplasty (PTA) alone and 117 (70%) were treated with a combination of PTA and stent placement. Procedure-related complications occurred in 7 of the 168 individuals (4%). The cumulative 1-, 5- and 10-year primary patency rates were 95%, 77% and 58%, respectively. Independent predictors of reocclusion included increased white blood cell count and use of PTA alone. The cumulative 1-, 5- and 10-year secondary patency rates were 97%, 90% and 86%, respectively. There were 22 deaths during a median follow-up of 30 months (range, 0.25-137 months). The cumulative 1-, 5- and 10-year survival rates were 96%, 83% and 73%, respectively. Independent predictors of survival included variceal bleeding, increased alkaline phosphatase and blood urea nitrogen levels, and reocclusion.

Venous Angioplasty for Stenosis or Occlusion associated with Superior Vena Cava Syndrome

Superior vena cava stenting for the treatment of malignant and nonmalignant superior vena cava obstruction is well established (Schindler, 1999; Uberoi, 2006). Venous angioplasty is often necessary prior to stenting to offer safe palliation of potentially fatal complications associated with mediastinal malignant disease and compares very favorably with standard therapies such as chemotherapy and radiotherapy. Superior vena cava syndrome can also be caused by benign occlusion from chronic indwelling catheters resulting in arm or facial swelling, difficulty breathing, or an inability to obtain vital venous access, among others.

Iliac Vein Compression Syndrome (for example, May-Thurner Syndrome)

May-Thurner syndrome has been treated with endovascular stent placement for nearly 20 years (O'Sullivan, 2000; Semba, 1994). Endovascular therapy, specifically catheter-directed thrombolysis followed by stent placement, is the current primary intervention for May-Thurner syndrome (Moudgill, 2009). Review of the current literature, primarily case studies and case series, indicates that angioplasty has also been used with mixed results. Peters and colleagues (2012) report three cases and Zander (2008) reports one case of successful intervention in May-Thurner compression with angioplasty. However, Patel (2000) reports that 10 women with symptomatic May-Thurner syndrome failed an initial course of angioplasty and subsequently progressed to urokinase and stenting. One retrospective case review from a surgical registry included 15 May-Thurner cases in which venous angioplasty with stenting restored and maintained venous flow through the compressed area. Titus and colleagues (2011) described a series of iliofemoral venous angioplasty and stenting occurring over a 4-year period. Charts were retrospectively reviewed for individual demographics, the extent of venous system involvement, the time course of the venous pathology, and any underlying cause. The 15 (42%) individuals with a recognized underlying etiology had been diagnosed with May-Thurner syndrome. An etiology was not recognized in nine cases. A total of 36 subjects (40 limbs) were stented from January 2005 through December 2008. Both lower extremities were involved in 4 subjects. Thrombolysis was performed in 19 cases (52.8%). The mean follow-up time period in the study population was 10.5 months. One stent in the study occluded acutely and required restenting. Primary patency rates at 6, 12 and 24 months were 88%, 78.3% and 78.3%, respectively. Secondary patency rates for the same time frames were 100%, 95% and 95%. Better outcomes were seen in stenting for May-Thurner syndrome and idiopathic causes, whereas external compression and thrombophilia seemed to portend less favorable outcomes (P<0.001). Symptomatic improvement was reported in 24 of 29 individuals (83%) contacted by telephone follow-up.

Venous Angioplasty for Pulmonary Vein Stenosis

Expert specialty consensus review indicates that venous angioplasty may be used for the treatment of pulmonary vein stenosis. Recently there have been published reports of venous angioplasty being successfully used to treat pulmonary vein stenosis following lung transplant (Loyalka, 2012).

Venous Angioplasty for Congenital Heart Disease:

Angioplasty has long played a role in the treatment of numerous congenital cardiac defects including stenosis or hypoplasia of a pulmonary artery; coarctation of the aorta, transposition of the great arteries, repair of sinus venosus atrial septal defect (ASD); or venous obstruction following Mustard or Senning repair of transposition of the great arteries (Allen, 1998).

Treatment of Multiple Sclerosis

Various reports in the peer reviewed published literature (Zamboni 2009a; Zamboni, 2009b) describe a potential relationship between the abnormal venous circulation termed chronic cerebrospinal venous insufficiency (CCSVI) and multiple sclerosis (MS).

The role of venous angioplasty as a potential treatment option for those with MS and CCSVI has been investigated. Zamboni and colleagues (2009c) evaluated the influence of venous angioplasty on the clinical outcome of CCSVI and MS. The authors characterized CCSVI as multiple stenoses of the principal pathways of extracranial venous drainage, including the internal jugular veins (IJV) and the azygous (AZY) vein with development of insufficient drainage evidenced by cerebral magnetic resonance (MR) perfusion studies. In this study, a total of 65 consecutive participants with CCSVI and MS (35 with relapsing remitting MS [RRMS], 20 with secondary progressive MS [SPMS], and 10 with primary progressive MS [PPMS]), underwent venous angioplasty. Mean follow-up time was 18 months. Reported study results included lower postoperative venous pressure in the IJVs and AZY, a higher risk of restenosis in the IJVs compared with the AZY, improved MS clinical outcomes, and improved mental quality of life outcomes in all types of MS, except SPMS.

Doepp and colleagues (2010) investigated the hypotheses of CCSVI by performing extended extracranial and transcranial color coded sonography studies on 56 participants with MS and 20 controls. Study results demonstrated that blood flow direction in the internal jugular veins (IJVs) and vertebral veins was normal (in all but 1 person) and IJV stenosis was not present in any participants. The authors concluded that the results of their study did not suggest restricted venous drainage in participants with MS and challenged the hypothesis that CCSVI plays a role in the pathogenesis of MS.

Sundstrom and colleagues (2010) tested the hypothesis of CCSVI on 21 individuals with RRMS and 20 controls. All study participants were examined with magnetic resonance imaging (MRI) and those with RRMS also received contrast enhanced magnetic resonance angiography (MRA). Findings reported to be associated with the MS hypothesis of CCSVI were not able to be reproduced. The authors concluded they found no support for a treatment rationale of endovascular procedures like angioplasty or stenting for the treatment of individuals with CCSVI and MS.

In a larger, more recent controlled and blinded study, Zivadinov and colleagues (2011) performed transcranial and extracranial Doppler imaging on 499 people to determine the prevalence of CCSVI. The participants included 289 people with MS, 163 healthy controls (HC), 26 with other neurological diseases (OND), and 21 with clinically isolated syndrome (CIS) (having a first neurological episode that can often lead to definite MS). Researchers found an increased prevalence of CCSVI in MS, although lower than in earlier reports. In addition, CCSVI was found in non-MS participants. Variable rates were reported depending on whether or not borderline cases were included. When borderline cases were considered not to have CCSVI, the prevalence was 56.1% in MS, 42.3% in OND, 38.1% in CIS and 22.7% in HC. When borderline cases were excluded from calculations, the prevalence of CCSVI was 62.5% in MS, 45.8% in OND, 42.1% in CIS and 25.5% in HC. The researchers reported modest sensitivity and specificity and stated that their findings point against CCSVI as having a primary causative role in MS.

Kostecki and colleagues (2011) prospectively evaluated 6 month follow-up results of endovascular treatment of CCSVI and MS. A total of 36 participants with confirmed MS and CCSVI underwent endovascular treatment by means of a uni- or bilateral jugular vein angioplasty with optional stent placement. Their MS-related disability status and quality of life were evaluated at 1, 3 and 6 months postoperatively by the following scales: Expanded Disability Status Scale (EDSS), Multiple Sclerosis Impact Scale (MSIS-29), Epworth Sleepiness Scale (ESS), Heat Intolerance scale (HIS) and Fatigue Severity Scale (FSS). For patency and restenosis rate assessment, the control ultrasound (US) duplex Doppler examination was used. Six months after the procedure, restenosis in post-PTA jugular veins was found in 33% of cases. Among 17 individuals who underwent stent implantation into the jugular vein, restenosis or partial in-stent thrombosis was identified in 55% of the cases. At the 6 month follow-up, there was no significant improvement in the EDSS or the ESS. The endovascular treatment of the CCSVI improved the quality of life according to the MSIS-29 scale but only up to 3 months after the procedure (with no differences in the 6 month follow-up assessment). Six months after the jugular vein angioplasty (with or without stent placement), a statistically significant improvement was observed only in the FSS and the HIS. Based on their findings, the researchers concluded that "endovascular treatment in individuals with MS and concomitant CCSVI did not have an influence on the patient's neurological condition; however, in the mid-term follow-up, an improvement concerning some parameters influencing the patient's quality-of-life parameters was observed." They also emphasized that there is an urgent need for a well-designed randomized controlled trial.

Zamboni and colleagues (2012) reported on a small series of 8 individuals with ultrasound criteria for CCSVI undergoing immediate venoplasty compared to 7 individuals undergoing delayed venoplasty. There were improvements on the EDSS (expanded disability status scale) for both groups following treatment, but no difference between groups in the first 6 months comparing immediate versus delayed treatment subjects. The relapse rate during the initial 6 months was 0.12% in the treatment group versus 0.66% in the control group; however, this difference did not meet statistical significance. There were also trends toward improvement for the immediate treatment group on MRI scans, such as the number of T2 lesions, but these differences also did not reach statistical significance. No short-term adverse events were reported following the procedure, but the rate of restenosis at 1 year was 27% in treated individuals.

Van Zuuren and colleagues (2012), in a Cochrane Review, concluded there was no high level evidence to either support or refute the efficacy and safety of angioplasty for CCSVI in people with MS. The authors further noted that additional robust and well designed studies are needed.

There have been various reports of serious adverse and potentially fatal events occurring as a result of venous angioplasty for the treatment of MS (Doepp, 2010; Kahn, 2010; Qui 2010). Khan (2010) states: "Any invasive endovascular procedures including angioplasty and venous stent placement should be discouraged until there is conclusive evidence to justify their indication in MS."

Mandato and colleagues (2012) evaluated the safety of outpatient endovascular treatment in those with MS and CCSVI. A retrospective analysis was performed to assess complications occurring within 30 days of endovascular treatment of CCSVI. The study was comprised of 240 individuals and 257 procedures performed over 8 months. The indication for treatment was symptomatic MS. Primary procedures accounted for 93.0% (239 of 257) of procedures, and repeat interventions accounted for 7% (18 of 257). For individuals treated primarily, 87% (208 of 239) had angioplasty and 11% (26 of 239) had stent placement. Five individuals were not treated. Of those with restenosis, 50% (9 of 18) had angioplasty and 50% (9 of 18) had stent placement. Complications reported in the participants after the procedures included headache in 8.2% (21 of 257) and neck pain in 15.6% (40 of 57); 52.5% (21 of 40) of these individuals underwent stent placement. Three individuals experienced venous thrombosis requiring retreatment within 30 days. Sustained intra-procedural cardiac arrhythmias were observed in 3 individuals with 2 requiring hospitalization. The authors reported that the correlation between MS and CCSVI is a new theory and future research is needed in this area to show the effectiveness of endovascular treatment.  This particular study demonstrated the risks of angioplasty and did not assess clinical outcomes after endovascular treatment of CCSVI.

The United States Food and Drug Administration (FDA) (2012) issued an alert concerning the potential for adverse events following endovascular interventions for MS. Reports of adverse events obtained by the FDA included death, stroke, detachment and/or migration of stents, vein damage, thrombosis, cranial nerve damage and abdominal bleeding. This alert cautioned that clinical trials of this procedure require FDA approval and an investigational device exemption due to potential for harms.

The American Academy of Neurology does not currently address venous angioplasty for the treatment of MS or CCSVI in any of their current MS guidelines. The Cardiovascular and Interventional Radiological Society of Europe (CIRSE) (2010) in a commentary on the treatment of CCSVI indicates there is a lack of evidence for the treatment of CCSVI, stresses the need for randomized trials and advises that this treatment should not be offered to those with MS outside of a well-designed clinical trial.

The U.K. National Center for Clinical Excellence (NICE) (2012) issued guidance on the use of percutaneous venoplasty to treat CCSVI in those with MS. The following statements on the diagnosis and treatment of CCSVI were included in this document:

At this time there is insufficient evidence available in the peer-reviewed published literature to support the use of venous angioplasty (with or without stent placement) for the treatment MS. The relationship between CCSVI and MS is not certain, the impact of treating CCSVI on outcomes of MS is not known and the safety and efficacy of this treatment have not been proven. Limitations of recent published studies include small sample size and lack of randomization. Current findings are preliminary and there are studies which demonstrate conflicting results. Results from large randomized controlled clinical trials are needed to further assess this proposed treatment modality.

Venous Angioplasty for Ilio-femoral Venous Thrombosis and Chronically Occluded Iliac Vein

Kurklinsky and colleagues (2012) retrospectively analyzed 30-day, 1-year and 3-year patency of chronically occluded ilio-femoral venous thrombosis treated with stent placement in a case series from a single institution. Records of 189 consecutive individuals treated by interventional radiology for ilio-femoral venous occlusions between March 1, 2003 and December 1, 2008, were reviewed. A total of 89 cases of chronic iliac or ilio-femoral deep vein thrombosis without involvement of the inferior vena cava met criteria for analysis. All individuals (91 limbs) successfully underwent angioplasty with placement of venous self-expanding stents. Patency rate at discharge was 100%. Following the index procedure, mean pressure gradient across the lesion decreased from 5.63 mm Hg to 0.71 mm Hg. Median follow-up was 11.3 months (range, 0.8-72.4 mo). Follow-up at 30 days demonstrated 90 of 91 limbs to be patent. Primary patency rates of treated limbs at 1 and 3 years were 81% and 71%, respectively. Primary patency was lost in 17 cases (19.1%); interventions to maintain or restore stent patency were performed in 13 cases (14.6%). Primary assisted limb patency rates at 1 and 3 years were 94% and 90%, respectively; secondary patency rate was 95%. The authors concluded that angioplasty with stent placement for treatment of chronically thrombosed ilio-femoral veins is a low-risk procedure with acceptable patency rates for as long as 3 years.

TORPEDO (Thrombus Obliteration By Rapid Percutaneous Endovenous Intervention In Deep Venous Occlusion) Trial

In a randomized controlled trial, Sharifi and colleagues (2010) compared the safety and efficacy of percutaneous endovenous intervention (PEVI) and anticoagulation versus anticoagulation alone in the reduction of venous thromboembolism (VTE) and post-thrombotic syndrome (PTS) in acute proximal deep venous thrombosis (DVT). A total of 183 individuals with symptomatic proximal DVT were randomized over a 30 month period beginning in February 2007 to receive either PEVI plus anticoagulation, or anticoagulation alone. PEVI consisted of one or more of a combination of thrombectomy, balloon venoplasty, stenting, or local low-dose thrombolytic therapy. In the PEVI group, 68 persons received a balloon venoplasty and 47 stents were placed in 27 persons. Anticoagulation consisted of intravenous unfractionated heparin or subcutaneous low-molecular weight heparin plus warfarin. At 6 months follow-up, recurrent VTE developed in 2 of 88 persons of the PEVI plus anticoagulation group versus 12 of 81 of the anticoagulation-alone group (2.3% vs. 14.8%, p=0.003). PTS developed in 3 of 88 persons of the PEVI plus anticoagulation group and 22 of 81 of the anticoagulation-alone group (3.4% vs. 27.2%, P<0.001). The authors concluded that PEVI plus anticoagulation may be superior to anticoagulation alone in the reduction of VTE and PTS at 6months and in reducing length of hospital stay and signs and symptoms of DVT.

Follow up results of the TORPEDO trial were reported by Sharifi and colleagues in 2012. Over a mean follow-up of 30 ± 5 months (range 12-41), 3 persons were lost to follow up and there were 11 deaths (5 PE, 6 cancer) which left 88 of 91 persons in the PEVI group and 81 of 92 in the control group. PTS developed at a significantly higher rate in the control group compared to the PEVI group [6 (6.8%) of the PEVI plus anticoagulation group vs. 24 (29.6%)] of the anticoagulation only group (p<0.001). Recurrent VTE developed in 4 (4.5%) of the 88 PEVI plus anticoagulation subjects vs. 13 (16%) of the 81 subjects receiving anticoagulation only. The authors concluded that PEVI in persons with proximal DVT appears to be superior to anticoagulation alone in the reduction of VTE and PTS. This benefit extended to more than 30 months.

CaVenT Study

Many persons receiving conventional anticoagulant treatment for acute DVT develop post thrombotic syndrome (PTS). In an open-label, randomized controlled trial, Enden and colleagues (2012) examined whether additional treatment with catheter-directed thrombolysis (CDT) using alteplase reduced the development of PTS. A total of 209 persons aged 18-75 years with a first-time iliofemoral DVT were recruited from various Norwegian hospitals. Study subjects were randomized within 21 days from symptom onset to conventional anticoagulant treatment alone or additional CDT. Two co-primary outcomes were assessed: frequency of PTS as assessed by Villalta score at 24 months, and iliofemoral patency after 6 months. A total of 209 participants were randomly assigned to treatment groups (108 control, 101 CDT). At completion of 24 months' follow-up, data for clinical status was available for 189 subjects (90%; 99 control, 90 CDT). At 24 months, 37 (41.1%) subjects allocated additional CDT presented with PTS compared to 55 (55.6%) in the control group. The difference in PTS corresponded to an absolute risk reduction of 14.4%, and the number needed to treat was 7. Iliofemoral patency after 6 months was reported in 58 subjects (65.9%) on CDT versus 45 (47.4%) on control. CDT improved clinically relevant long-term outcomes after iliofemoral DVT by reducing PTS compared with conventional treatment. Study limitations included possible local differences due to four different centers having performed the interventions as well as the possibility of bias due to the open-label design of the study.

In a sub analysis of the CaVenT Study, Haig and colleagues (2012) investigated potential markers for early and long-term efficacy of CDT, adverse events, and their interrelationship. Subjects aged 18-75 years (mean, 54 y; 33 women) with first-time proximal DVT and symptoms up to 21 days were included in an open, multicenter, randomized, controlled trial (CaVenT study). The authors reported on the 92 subjects who received CDT procedures after allocation to the CDT arm in the CaVenT study. The DVT diagnosis was verified by ultrasound or by supplementary venography or CT venography. Anticoagulant therapy was initiated with low molecular weight heparin. CDT was initiated the next working day, and low molecular weight heparin was subsequently stopped. Adjunctive balloon angioplasty and stent insertion were performed at the operator's discretion to obtain flow and stenosis of less than 50%. Adjunctive balloon angioplasty was performed in 40 subjects. Five subjects, (3 women and 2 men) were diagnosed with May-Thurner syndrome (iliac vein compression) and treated with adjunctive angioplasty, two with a balloon only and three with stents.

A mean clot resolution of 82% ± 25 was achieved in 92 subjects. Successful lysis (≥50%) was obtained in 83 persons. Early efficacy was equal for femoral and iliofemoral thrombus and not related to thrombus load before CDT, symptom duration, or predisposing risk factors. Lower thrombus score at completion of CDT was associated with increased patency at 24 months (p=0.040), and increased patency after 6 and 24 months was correlated with reduced development of PTS after 24 months (p<0.001). The authors concluded that CDT via popliteal access appeared to safely and effectively remove clots and restore iliofemoral patency. No baseline characteristics were associated with early efficacy or PTS after 24 months.

Treatment of chronically occluded iliac veins has typically consisted of endovenous bypass. Raju and colleagues (2009) reported on 167 post-thrombotic total iliac occlusions which had been treated with percutaneous recanalization. The procedure was reportedly successful in 129 of 167 limbs (83%). During a 48-month follow-up period, 39 out of 139 stented limbs (28%) occluded. Seventeen of these individuals had patency restored but 7 later re-occluded. The 4-year secondary stent patency was 66%. While the majority of chronic total occlusions were successfully recanalized with very little morbidity, minimal downtime, sustained long-term stent patency, and substantial clinical improvement, one third of the study subjects failed to maintain patency.

The Society of Interventional Radiology 2009 position statement on the treatment of acute iliofemoral deep vein thrombosis with use of adjunctive catheter-directed intrathrombus thrombolysis states:

The Society of Interventional Radiology (SIR) supports the use of anticoagulant therapy for DVT and the use of adjunctive CDT or surgical thrombectomy for patients with limb-threatening phlegmasia. SIR is aware of the controversy within the medical community regarding the use of adjunctive CDT for patients with acute DVT who do not exhibit signs of impending circulatory compromise. SIR recognizes the methodologic limitations of the studies supporting CDT and strongly believes that the execution of a multicenter randomized trial to conclusively quantify the risk–benefit ratio of CDT in patients with acute proximal DVT should be considered an important national health care priority. In the meantime, physicians are still obligated to carefully consider the short-term and long-term consequences of DVT and to recommend the best possible overall treatment strategy to patients based on the currently available, albeit imperfect, evidence. Although there are no large randomized trials to mitigate for or against CDT, the preponderance of the available evidence favors the existence of a clinical benefit to adjunctive CDT for the subset of patients with acute iliofemoral DVT.

The American Heart Association (2011) Recommendations for Percutaneous Transluminal Venous Angioplasty and Stenting, state:

1. Stent placement in the iliac vein to treat obstructive lesions after CDT, PCDT, or surgical venous thrombectomy is reasonable (Class IIa; Level of Evidence C).

2. For isolated obstructive lesions in the common femoral vein, a trial of percutaneous transluminal angioplasty without stenting is reasonable (Class IIa; Level of Evidence C).

3. The placement of iliac vein stents to reduce PTS symptoms and heal venous ulcers in patients with advanced PTS and iliac vein obstruction is reasonable (Class IIa; Level of Evidence C).

4. After venous stent placement, the use of therapeutic anticoagulation with similar dosing, monitoring, and duration as for IFDVT patients without stents is reasonable (Class IIa; Level of Evidence C).

5. After venous stent placement, the use of antiplatelet therapy with concomitant anticoagulation in patients perceived to be at high risk of rethrombosis may be considered (Class IIb; Level of Evidence C).

(Class IIa: Benefit >> risks, Additional studies with focused objectives needed, it is reasonable to perform procedure or administer treatment. Class IIb: Benefit ≥ risks, additional studies with broad objectives needed, additional registry data would be helpful. Procedures/treatment may be considered. Evidence C: very limited populations evaluated, Only consensus opinion of experts, case studies or standards of care.)

Professional guidelines support the use of venous angioplasty with or without stenting, based primarily on expert consensus. Emerging studies may suggest improved patency and decreased post thrombotic complications. However, these studies are limited in not isolating the unique contribution to patency and improved outcomes of angioplasty, instead reporting out improvements with angioplasty as one of several catheter directed therapies.

Venous Angioplasty with or without stenting for Other Conditions

Emerging indications for venous angioplasty are nutcracker syndrome and venous thoracic outlet syndrome (vTOS). Nutcracker syndrome is caused by arterial compression of the left renal vein between the superior mesenteric artery and the aorta (Hartung, 2005). Small case series and retrospective analysis (Chen, 2011; Hartung, 2005; Quevodo, 2014; Wang, 2012) report that endovascular stenting results in increased size of the left renal vein and improved peak velocity flow with improvements in flank pain, hematuria and proteinuria. Both Chen and Wang reported long-term follow-up for individuals at a median of 66 and 36 months, respectively. However, existing evidence is currently insufficient to support the use of venous angioplasty for nutcracker syndrome. Additional experience and follow-up is needed.

Chen and colleagues (2011) retrospectively evaluated the endovascular stenting of 61 individuals with nutcracker syndrome and a median age of 26 years. Symptoms were hematuria, proteinuria or flank pain. Follow-up was completed by clinical exams and Duplex ultrasound at 3, 6 and 12 months. Peak velocity in the aortomesenteric portion, and the anteroposterior diameter ratio of the renal hilum and the aortomesenteric portion of the left renal vein on Duplex ultrasound after stenting was significantly decreased compared to that on Duplex ultrasound before stenting. Peak velocity in the hilar portion did not statistically differ. Symptoms resolved or improved in 15, 24 and 20 of the 61 individuals within 1 week, and 1 and 6 months, respectively, after endovascular stenting. Symptoms remained unchanged in 2 cases and recurred in 1 case. A perioperative complication was noted in 1 individual, consisting of a stent mistakenly moved and poorly deployed in a left renal vein collateral and requiring operative intervention. Postoperative complications included stent migration into the right atrium, stent protrusion into the inferior vena cava and stent migration into the hilar left renal vein in 1 case each. Study limitations included the retrospective nature of the review. The authors concluded that based on their long-term follow-up, endovascular stenting is a safe, effective procedure in select adults with persistent, severe symptoms that are unresponsive to conservative therapy at 24 months of follow-up.

In a subsequent retrospective review, Wang and colleagues (2012) assessed 30 individuals diagnosed with nutcracker syndrome admitted for endovascular treatment from January 2004 to August 2010. Each subject received one self-expanding metallic stent in the compressed portion of the left renal vein during the operation, and three with severe left-sided varicoceles received left gonadal vein embolization. The postoperative follow-up was 12 to 80 months. No perioperative complications occurred. Postoperatively, 2 cases of stent migration were found at 12 months. At 1-month follow-up, subjects improved, including 2 who had persistent but less microscopic hematuria than before treatment. The clinical symptoms of nutcracker syndrome almost disappeared at 3 months after the treatment. All stents were patent at the duplex scan examination, without restenosis, and no secondary recurrence of the symptoms occurred at the end of the follow-up. Study limitations included the retrospective nature of the review. The authors concluded that endovascular treatment is a safe, effective, and minimally invasive technique that provides good long-term patency rates for nutcracker syndrome. Additionally the authors stated "further experience and follow-up are needed before accepting such a procedure for the superior choice of the treatment for nutcracker syndrome."

vTOS is caused by compression of peripheral nerves and vascular structures along their course through the upper thoracic aperture to the axilla (Skalicka, 2011). The evidence regarding venous angioplasty for vTOS consists mainly of retrospective analyses (Bamford, 2012; Guzzo, 2010; Skalicka, 2011) that are supportive of this treatment modality.

In 2010, Guzzo and colleagues retrospectively reviewed their experience with axillosubclavian vein thrombosis, also known as Paget-Schroetter syndrome, a rare presentation of vTOS. Preoperative clinical notes for all vTOS cases from July 2003 to May 2009 were reviewed and divided into two groups. One group consisted of individuals undergoing preoperative endovascular intervention with thrombolysis and venoplasty, and the other group consisted of those managed with anticoagulation alone prior to first rib resection and scalenectomy (FRSS). A total of 103 individuals had 110 FRRS for subclavian vein thrombosis, 7 of which had contralateral FRRS for thrombosis. Of the 110 veins evaluated, 45 underwent endovascular intervention (thrombolysis, with or without venoplasty) prior to FRRS, and at 1 year, 41 (91%) were patent with symptom improvement. In the 65 veins treated with anticoagulation alone, 59 (91%) ultimately were patent, with symptomatic improvement in all. In those completing follow-up, 100/110 (91%) of subclavian veins were patent and the individuals were asymptomatic. Study limitations included the retrospective nature of the review, a relatively short follow-up period, and a possible disparity in the duration and type of anticoagulation as well as a history of prior endovascular treatments. While the primary focus of this study was the use of thrombolytic therapy, the authors concluded that preoperative endovascular therapy with thrombolysis and possible venoplasty offered no overall benefit for sub-acute and chronic effort thrombosis, or Paget-Schroetter syndrome.

Skalicka and colleagues (2011) performed a retrospective analysis of 73 individuals treated at a single institution between 2001 and 2007 for venous thrombotic complications secondary to vTOS. Long-term follow-up with duplex ultrasound was completed 6-12 months after the initial clinical event. The initial treatment provided was based on severity of symptoms. Endovascular procedures were attempted in 41 cases (56%) as a primary thrombosis treatment. A total of 12 additional individuals were treated with an endovascular approach due to failure of conservative treatment based on low molecular weight heparin alone. Endovascular treatment by balloon angioplasty was performed in 35 individuals. In 7 cases, re-treatment was necessary due to suboptimal patency or re-thrombosis. In 12 individuals, failure of the endovascular approach resulted in primary surgical intervention consisting of thrombectomy followed by decompression. An additional 22 individuals with persistent symptoms underwent subsequent surgical decompression. Conservative treatment consisting of IV or low molecular weight heparin was used for 32 cases (44%) with mild symptoms. Of these, 12 subsequently were referred for endovascular treatment and 8 for elective surgery due to persistent symptoms. None of the cases required primary surgical thrombectomy or revascularization. Follow-up assessment of patency by ultrasound and clinical exam was performed in 62 (82%). Surgery was associated with a significantly lower rate of ultrasound-detected signs of persistent vascular compression as compared to treatment consisting only of endovascular and/or conservative therapy. However, the rate of persistent clinical symptoms was similar in both groups. Study data demonstrated that initial endovascular treatment provided as first-line therapy to highly symptomatic individuals and to those with failure of conservative treatment improved symptoms in 77%, avoiding the need for acute surgery. A total of 13 (23%) did have persistent clinical symptoms. Study limitations included a limited sample of cases from a single center. The authors concluded that long-term outcomes in those for whom surgery was required were satisfactory and comparable to those requiring only conservative and/or endoluminal treatment.

Bamford and colleagues (2012), in a single-center retrospective review, evaluated the management and outcomes of vTOS from 2002 through 2009. Initially, 35 cases were identified, of which all underwent first rib resection for subclavian venous thrombosis. Two individuals were excluded from the review due to loss of follow-up and incomplete notes. Of the 33 cases reviewed, 20 individuals were treated for vTOS prior to 2006 (group A) and the remaining 13 were treated in 2006 and after (group B). Duplex ultrasound imaging was recorded on presentation in 31 of the 33 cases (94%) and of these, 3 cases had additional MRA of the affected limb. A total of 17 of the 33 cases (51.5%) were initially treated with CDT and 6 cases (35%) underwent balloon angioplasty before decompression of the thoracic outlet. The remaining 11 (65%) had recanalized sufficiently to proceed with thoracic outlet decompression with CDT alone. Most cases of CDT, 10/17 (58.8%) occurred in group B. In group A, most cases, 13/33 (39.3%) were treated initially with a variable period of anticoagulation. All individuals who subsequently underwent thoracic outlet decompression had evidence of venous recanalization before surgery. Postoperatively, 91% of individuals had patent veins at discharge from follow-up and were free of symptoms at a median of 44 months. Those treated within 7 days of symptom onset with CDT and excision of first rib in less than 30 days had improved symptom-free rates. The authors reported that the lack of power in this study, which is not uncommon, makes it difficult to reach firm conclusions regarding the effectiveness of the proposed protocol for vTOS management. Further noted was that while not conclusive, this study suggests that a treatment algorithm of early referral, immediate CDT and surgical decompression may lead to improved vTOS outcomes.

Background/Overview

Venous angioplasty is a procedure which can be performed during a venogram to open or bypass veins. It also can be used for placement of a stent, which keeps the vessel in an open position to allow for improved blood flow.

There are numerous conditions which have been successfully treated with venous angioplasty, including stenotic or thrombosed arterio-venous-dialysis access grafts; Budd-Chiari syndrome, superior vena cava syndrome, iliac vein compression syndrome (for example, May-Thurner syndrome), and congenital heart disease. Venous angioplasty has not been proven to be efficacious in a variety of other conditions, including but not limited to the treatment of MS or CCSVI, chronically occluded iliac veins, and ileo-femoral venous thrombosis.

Definitions

Budd-Chiari syndrome: A rare disease characterized by obstruction of outflow from the small hepatic veins to the level of termination of the inferior vena cava.

May-Thurner syndrome: A rarely diagnosed condition caused by compression of the left iliac vein by the right iliac artery, which increases the risk of deep vein thrombosis in the left extremity.

Nutcracker syndrome: A rare condition caused by arterial compression of the left renal vein between the superior mesenteric artery and the aorta.

Superior vena cava syndrome: A group of symptoms that occur (most often as a result of cancer) when the superior vena cava is partially blocked. The most common symptoms are coughing, trouble breathing, and swelling in the face, neck, upper body or arms.

Venogram: An X-ray test that takes pictures of blood flow through the veins in a certain area of the body.

Venous thoracic outlet syndrome (vTOS): A rare disorder caused by compression of peripheral nerves and vascular structures along their course through the upper thoracic aperture to the axilla.

Coding

The following codes for treatments and procedures applicable to this document are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

When services are Medically Necessary:

CPT 
35460Transluminal balloon angioplasty, open; venous
35476Transluminal balloon angioplasty, percutaneous; venous
37238Transcatheter placement of an intravascular stent(s), open or percutaneous, including radiological supervision and interpretation and including angioplasty within the same vessel, when performed; initial vein
37239Transcatheter placement of an intravascular stent(s), open or percutaneous, including radiological supervision and interpretation and including angioplasty within the same vessel, when performed; each additional vein
75978Transluminal balloon angioplasty, venous (eg, subclavian stenosis), radiological supervision and interpretation
  
ICD-9 Diagnosis[For dates of service prior to 10/01/2015]
164.2-164.9Malignant neoplasm of mediastinum
353.0Brachial plexus lesions
415.11-415.19Pulmonary embolism and infarction
417.8Other specified diseases of pulmonary circulation [specified as pulmonary vein stenosis]
453.0Budd-Chiari syndrome
453.2Venous embolism and thrombosis of inferior vena cava
453.77Chronic venous embolism and thrombosis of other thoracic veins (superior vena cava)
453.87Acute venous embolism and thrombosis of other thoracic veins (superior vena cava)
459.2Compression of vein [specified as superior vena cava syndrome or iliac vein compression]
585.6End stage renal disease
585.9Chronic kidney disease, unspecified
745.0-745.9Bulbus cordis anomalies and anomalies of cardiac septal closure
747.0-747.49Other congenital anomalies of great arteries, great veins
789.00Abdominal pain, unspecified site
789.1Hepatomegaly
789.59Other ascites
996.1Mechanical complication of other vascular device, implant, and graft (arteriovenous fistula/shunt/catheter)
996.62Infection and inflammatory reaction due to vascular device, implant and graft
996.73Other complications due to renal dialysis device, implant or graft
  
ICD-10 Procedure[For dates of service on or after 10/01/2015]
027Q04Z-027Q4ZZDilation of right pulmonary artery [by approach and with or without device; includes codes 027Q04Z, 027Q0DZ, 027Q0ZZ, 027Q34Z, 027Q3DZ, 027Q3ZZ, 027Q44Z, 027Q4DZ, 027Q4ZZ]
027R04Z-027R4ZZDilation of left pulmonary artery [by approach and with or without device; includes codes 027R04Z, 027R0DZ, 027R0ZZ, 027R34Z, 027R3DZ, 027R3ZZ, 027R44Z, 027R4DZ, 027R4ZZ]
027S04Z-027S4ZZDilation of right pulmonary vein [by approach and with or without device; includes codes 027S04Z, 027S0DZ, 027S0ZZ, 027S34Z, 027S3DZ, 027S3ZZ, 027S44Z, 027S4DZ, 027S4ZZ]
027T04Z-027T4ZZDilation of left pulmonary vein [by approach and with or without device; includes codes 027T04Z , 027T0DZ, 027T0ZZ, 027T34Z, 027T3DZ, 027T3ZZ, 027T44Z, 027T4DZ, 027T4ZZ]
027V04Z-027V4ZZDilation of superior vena cava [by approach and with or without device; includes codes 027V04Z, 027V0DZ, 027V0ZZ, 027V34Z, 027V3DZ, 027V3ZZ, 027V44Z, 027V4DZ, 027V4ZZ]
05700DZ-05704ZZDilation of azygos vein [by approach and with or without device; includes codes 05700DZ, 05700ZZ, 05703DZ, 05703ZZ, 05704DZ, 05704ZZ]
05710DZ-05714ZZDilation of hemiazygos vein [by approach and with or without device, includes codes 05710DZ, 05710ZZ, 05713DZ, 05713ZZ, 05714DZ, 05714ZZ ]
05730DZ-05744ZZDilation of innominate vein [right or left, by approach and with or without device, includes codes 05730DZ, 05730ZZ, 05733DZ, 05733ZZ, 05734DZ, 05734ZZ, 05740DZ, 05740ZZ, 05743DZ, 05743ZZ, 05744DZ, 05744ZZ]
05750DZ-05764ZZDilation of subclavian vein [right or left, by approach and with or without device, includes codes 05750DZ, 05750ZZ, 05753DZ, 05753ZZ, 05754DZ, 05754ZZ, 05760DZ, 05760ZZ, 05763DZ, 05763ZZ, 05764DZ, 05764ZZ]
05770DZ-05784ZZDilation of axillary vein [right or left, by approach and with or without device, includes codes 05770DZ, 05770ZZ, 05773DZ, 05773ZZ, 05774DZ, 05774ZZ, 05780DZ, 05780ZZ, 05783DZ, 05783ZZ, 05784DZ, 05784ZZ]
05790DZ-057A4ZZDilation of brachial vein [right or left, by approach and with or without device, includes codes 05790DZ, 05790ZZ, 05793DZ, 05793ZZ, 05794DZ, 05794ZZ, 057A0DZ, 057A0ZZ, 057A3DZ, 057A3ZZ, 057A4DZ, 057A4ZZ]
057B0DZ-057C4ZZDilation of basilic vein [right or left, by approach and with or without device, includes 057B0DZ, 057B0ZZ, 057B3DZ, 057B3ZZ, 057B4DZ, 057B4ZZ, 057C0DZ, 057C0ZZ, 057C3DZ, 057C3ZZ, 057C4DZ, 057C4ZZ]
057D0DZ-057F4ZZDilation of cephalic vein [right or left, by approach and with or without device, includes codes 057D0DZ, 057D0ZZ, 057D3DZ, 057D3ZZ, 057D4DZ, 057D4ZZ, 057F0DZ, 057F0ZZ, 057F3DZ, 057F3ZZ, 057F4DZ, 057F4ZZ]
057G0DZ-057H4ZZDilation of hand vein [right or left, by approach and with or without device, includes codes 057G0DZ, 057G0ZZ, 057G3DZ, 057G3ZZ, 057G4DZ, 057G4ZZ, 057H0DZ, 057H0ZZ, 057H3DZ, 057H3ZZ, 057H4DZ, 057H4ZZ]
057L0DZ-057L4ZZDilation of intracranial vein [by approach & with or without device, includes codes 057L0DZ, 057L0ZZ, 057L3DZ, 057L3ZZ, 057L4DZ, 057L4ZZ]
057M0DZ-057N4ZZDilation of internal jugular vein [right or left, by approach and with or without device; includes codes 057M0DZ, 057M0ZZ, 057M3DZ, 057M3ZZ, 057M4DZ, 057M4ZZ, 057N0DZ, 057N0ZZ, 057N3DZ, 057N3ZZ, 057N4DZ, 057N4ZZ]
057P0DZ-057Q4ZZDilation of external jugular vein [right or left, by approach and with or without device; includes codes 057P0DZ, 057P0ZZ, 057P3DZ, 057P3ZZ, 057P4DZ, 057P4ZZ, 057Q0DZ, 057Q0ZZ, 057Q3DZ, 057Q3ZZ, 057Q4DZ, 057Q4ZZ]
057R0DZ-057S4ZZDilation of vertebral vein [right or left, by approach and with or without device; includes codes 057R0DZ, 057R0ZZ, 057R3DZ, 057R3ZZ, 057R4DZ, 057R4ZZ, 057S0DZ, 057S0ZZ, 057S3DZ, 057S3ZZ, 057S4DZ, 057S4ZZ]
057T0DZ-057V4ZZDilation of face vein [right or left, by approach and with or without device; includes codes 057T0DZ, 057T0ZZ, 057T3DZ, 057T3ZZ, 057T4DZ, 057T4ZZ, 057V0DZ, 057V0ZZ, 057V3DZ, 057V3ZZ, 057V4DZ, 057V4ZZ]
057Y0DZ-057Y4ZZDilation of upper vein [by approach and with or without device; includes codes 057Y0DZ, 057Y0ZZ, 057Y3DZ, 057Y3ZZ, 057Y4DZ, 057Y4ZZ]
06700DZ-06704ZZDilation of inferior vena cava [by approach and with or without device; includes codes 06700DZ, 06700ZZ, 06703DZ, 06703ZZ, 06704DZ, 06704ZZ]
06710DZ-06714ZZDilation of splenic vein [by approach and with or without device; includes codes 06710DZ, 06710ZZ, 06713DZ, 06713ZZ, 06714DZ, 06714ZZ]
06720DZ-06724ZZDilation of gastric vein [by approach and with or without device; includes codes 06720DZ, 06720ZZ, 06723DZ, 06723ZZ, 06724DZ, 06724ZZ]
06730DZ-06734ZZDilation of esophageal vein [by approach and with or without device; includes codes 06730DZ, 06730ZZ, 06733DZ, 06733ZZ, 06734DZ, 06734ZZ]
06740DZ-06744ZZDilation of hepatic vein [by approach and with or without device; includes codes 06740DZ, 06740ZZ, 06743DZ, 06743ZZ, 06744DZ, 06744ZZ]
06750DZ-06754ZZDilation of superior mesenteric vein [by approach and with or without device; includes codes 06750DZ, 06750ZZ, 06753DZ, 06753ZZ, 06754DZ, 06754ZZ]
06760DZ-06764ZZDilation of inferior mesenteric vein [by approach and with or without device; includes codes 06760DZ, 06760ZZ, 06763DZ, 06763ZZ, 06764DZ, 06764ZZ]
06770DZ-06774ZZDilation of colic vein [by approach and with or without device; includes codes 06770DZ, 06770ZZ, 06773DZ, 06773ZZ, 06774DZ, 06774ZZ]
06780DZ-06784ZZDilation of portal vein [by approach and with or without device; includes codes 06780DZ, 06780ZZ, 06783DZ, 06783ZZ, 06784DZ, 06784ZZ]
06790DZ-067B4ZZDilation of renal vein [right or left, by approach and with or without device; includes codes 06790DZ, 06790ZZ, 06793DZ, 06793ZZ, 06794DZ, 06794ZZ, 067B0DZ, 067B0ZZ, 067B3DZ, 067B3ZZ, 067B4DZ, 067B4ZZ]
067C0DZ-067D4ZZDilation of common iliac vein [right or left, by approach and with or without device; includes codes 067C0DZ, 067C0ZZ, 067C3DZ, 067C3ZZ, 067C4DZ, 067C4ZZ, 067D0DZ, 067D0ZZ, 067D3DZ, 067D3ZZ, 067D4DZ, 067D4ZZ]
067F0DZ-067G4ZZDilation of external iliac vein [right or left, by approach and with or without device; includes codes 067F0DZ, 067F0ZZ, 067F3DZ, 067F3ZZ, 067F4DZ, 067F4ZZ, 067G0DZ, 067G0ZZ, 067G3DZ, 067G3ZZ, 067G4DZ, 067G4ZZ]
067H0DZ-067J4ZZDilation of hypogastric vein [right or left, by approach and with or without device; includes codes 067H0DZ, 067H0ZZ, 067H3DZ, 067H3ZZ, ,067H4DZ, 067H4ZZ, 067J0DZ, 067J0ZZ, 067J3DZ, ,067J3ZZ, 067J4DZ, 067J4ZZ]
067M0DZ-067N4ZZDilation of femoral vein [right or left, by approach and with or without device; includes codes 067M0DZ, 067M0ZZ, 067M3DZ, 067M3ZZ, 067M4DZ, 067M4ZZ, 067N0DZ, 067N0ZZ, 067N3DZ, 067N3ZZ, 067N4DZ, 067N4ZZ]
067P0DZ-067Q4ZZDilation of greater saphenous vein [right or left, by approach and with or without device; includes codes 067P0DZ, 067P0ZZ, 067P3DZ, 067P3ZZ, 067P4DZ, 067P4ZZ, 067Q0DZ, 067Q0ZZ, 067Q3DZ, 067Q3ZZ, 067Q4DZ, 067Q4ZZ]
067R0DZ-067S4ZZDilation of lesser saphenous vein [right or left, by approach and with or without device; includes codes 067R0DZ, 067R0ZZ, 067R3DZ, 067R3ZZ, 067R4DZ, 067R4ZZ, 067S0DZ, 067S0ZZ, 067S3DZ, 067S3ZZ, 067S4DZ, 067S4ZZ]
067T0DZ-067V4ZZDilation of foot vein [right or left, by approach and with or without device; includes codes 067T0DZ, 067T0ZZ, 067T3DZ, 067T3ZZ, 067T4DZ, 067T4ZZ, 067V0DZ, 067V0ZZ, 067V3DZ, 067V3ZZ, 067V4DZ, 067V4ZZ]
067Y0DZ-067Y4ZZDilation of lower vein [by approach and with or without device; includes codes 067Y0DZ, 067Y0ZZ, 067Y3DZ, 067Y3ZZ, 067Y4DZ, 067Y4ZZ]
  
ICD-10 Diagnosis[For dates of service on or after 10/01/2015]
C38.1-C38.3Malignant neoplasm of mediastinum
C38.8Malignant neoplasm of overlapping sites of heart, mediastinum and pleura
G54.0Brachial plexus disorders
I26.01-I26.99Pulmonary embolism
I28.8Other diseases of pulmonary vessels [specified as pulmonary vein stenosis]
I82.0Budd-Chiari syndrome
I82.210-I82.211Embolism and thrombosis of superior vena cava
I82.220-I82.221Embolism and thrombosis of inferior vena cava
I87.1Compression of vein [specified as superior vena cava syndrome or iliac vein compression]
N18.6End stage renal disease
N18.9Chronic kidney disease, unspecified
Q20.0-Q20.9Congenital malformations of cardiac chambers and connections
Q21.0-Q21.9Congenital malformations of cardiac septa
Q25.0-Q25.9Congenital malformations of great arteries
Q26.0-Q26.9Congenital malformations of great veins
R10.84Generalized abdominal pain
R16.0Hepatomegaly, not elsewhere classified
R18.8Other ascites
T82.590A-T82.591SOther mechanical complication of surgically created arteriovenous fistula, arteriovenous shunt
T82.7XXA-T82.7XXSInfection and inflammatory reaction due to other cardiac and vascular devices, implants and grafts
T82.818A-T82.818SEmbolism of vascular prosthetic devices, implants and grafts
T82.858A-T82.858SStenosis of vascular prosthetic devices, implants and grafts
T82.868A-T82.868SThrombosis of vascular prosthetic devices, implants and grafts

When services are Investigational and Not Medically Necessary:
For the procedure codes listed above for all other diagnoses, or when the code describes a procedure indicated in the Position Statement section as investigational and not medically necessary.

References

Peer Reviewed Publications:

  1. Bamford RF, Holt PJ, Hinchliffe RJ, et al. Modernizing the treatment of venous thoracic outlet syndrome. Vascular. 2012; 20(3):138-144.
  2. Beathard GA. Management of complications of endovascular dialysis access procedures. Semin Dial. 2003; 16(4):309.
  3. Beathard GA. Percutaneous transvenous angioplasty in the treatment of vascular access stenosis. Kidney Int. 1992; 42(6):1390.
  4. Chen S, Zhang H, Shi H, et al. Endovascular stenting for treatment of Nutcracker syndrome: report of 61 cases with long-term followup. J Urol. 2011; 186(2):570-575.
  5. Doepp F, Paul F, Valdueza JM, et al. No cerebrocervical venous congestion in patients with multiple sclerosis. Ann Neurol. 2010; 68(2):173-183.
  6. Enden T, Haig Y, Klow N, et al. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. Lancet. 2012; 379(9810):31-38.
  7. Fisher NC, McCafferty I, Dolapci M, et al. Managing Budd-Chiari syndrome: a retrospective review of percutaneous hepatic vein angioplasty and surgical shunting. Gut. 1999; 44(4):568-574.
  8. Guzzo JL, Chang K, Demos J, et al. Preoperative thrombolysis and venoplasty affords no benefit in patency following first rib resection and scalenectomy for subacute and chronic subclavian vein thrombosis. J Vasc Surg. 2010; 52(3):658-662.
  9. Haig Y, Enden T, Slagsvold CE, et al. Determinants of early and long-term efficacy of catheter-directed thrombolysis in proximal deep vein thrombosis. J Vasc Interv Radiol. 2012; 24(1):17-24.
  10. Han G, Qi X, Zhang W, et al. Percutaneous recanalization for Budd-Chiari syndrome: an 11-year retrospective study on patency and survival in 177 Chinese patients from a single center. Radiology. 2013; 266(2):657-667.
  11. Hartung O, Grisoli D, Boufi M, et al. Endovascular stenting in the treatment of pelvic vein congestion caused by nutcracker syndrome: lessons learned from the first five cases. J Vasc Surg. 2005; 42(2):275-280.
  12. Kanterman RY, Vesely TM, Pilgram TK, et al. Dialysis access grafts: anatomic location of venous stenosis and results of angioplasty. Radiology. 1995; 195(1):135-139.
  13. Khan O, Filippi M, Freedman MS, et al. Chronic cerebrospinal venous insufficiency and multiple sclerosis. Ann Neurol. 2010; 67(3):286-290.
  14. Kostecki J, Zaniewski M, Ziaja K, et al. An endovascular treatment of Chronic Cerebro-Spinal Venous Insufficiency in multiple sclerosis patients - 6 month follow-up results. Neuro Endocrinol Lett. 2011; 32(4):557-562.
  15. Kurklinsky AK, Bjarnason H, Friese JL, et al. Outcomes of venoplasty with stent placement for chronic thrombosis of the iliac and femoral veins: single-center experience. J VascInterv Radiol. 2012; 23(8):1009-1015.
  16. Loyalka P, Cevik C, Nathan S, et al. Percutaneous stenting to treat pulmonary vein stenosis after single-lung transplantation. Tex Heart Inst J. 2012; 39(4):560-564.
  17. Mandato KD, Hegener PF, Siskin GP, et al. Safety of endovascular treatment of chronic cerebrospinalvenous insufficiency: a report of 240 patients with multiple sclerosis. J Vasc Interv Radiol. 2012; 23(1):55-59.
  18. Meng QY, Sun NF, Wang JX, et al. Endovascular treatment of Budd-Chiari syndrome. Chin Med J (Engl). 2011; 124(20):3289-3292.
  19. Moudgill N, Hager E, Gonsalves C, et al. May-Thurner syndrome: case report and review of the literature involving modern endovascular therapy. Vascular. 2009; 17(6):330-335.
  20. O'Sullivan GJ, Semba CP, Bittner CA, et al. Endovascular management of iliac vein compression (May-Thurner) syndrome. J Vasc Interv Radiol. 2000; 11(7):823-836.
  21. Pappas JN, Vesely TM. Vascular rupture during angioplasty of hemodialysis raft-related stenoses. J Vasc Access. 2002; 3(3):120-126.
  22. Patel NH, Stookey KR, Ketcham DB, Cragg AH. Endovascular management of acute extensive iliofemoral deep venous thrombosis caused by May-Thurner syndrome. J Vasc Interv Radiol. 2000; 11(10):1297-1302.
  23. Pelage JP, Denys A, Valla D, et al. Budd-Chiari syndrome due to prothrombotic disorder: mid-term patency and efficacy of endovascular stents. Eur Radiol. 2003; 13(2):286-293.
  24. Peters M, Syed RK, Katz M, et al. May-Thurner syndrome: a not so uncommon cause of a common condition. Proc (Bayl Univ Med Cent). 2012; 25(3):231-233.
  25. Qiao T, Liu CJ, Liu C, et al. Interventional endovascular treatment for Budd-Chiari syndrome with long-term follow-up. Swiss Med Wkly. 2005; 135(21-22):318-326.
  26. Qiu J. Venous abnormalities and multiple sclerosis: another breakthrough claim? Lancet Neurol. 2010; 9(5):464-465.
  27. Quevedo HC, Arain SA, Rafeh NA. Systematic review of endovascular therapy for nutcracker syndrome and case presentation. Cardiovasc Revasc Med. 2014 Apr 26. pii: S1553-8389(14)00135-3. doi: 10.1016/j.carrev.2014.04.008. [Epub ahead of print]
  28. Raju S, Neglén P. Percutaneous recanalization of total occlusions of the iliac vein. J Vasc Surg. 2009; 50(2):360-368.
  29. Schindler N, Vogelzang RL. Superior vena cava syndrome. Experience with endovascular stents and surgical therapy. Surg Clin North Am. 1999; 79(3):683-694, xi.
  30. Schneider DB, Dimuzio PJ, Martin ND, et al. Combination treatment of venous thoracic outlet syndrome: open surgical decompression and intraoperative angioplasty. J Vasc Surg. 2004; 40(4):599-603.
  31. Semba CP, Dake MD. Iliofemoral deep venous thrombosis: aggressive therapy with catheter-directed thrombolysis. Radiology. 1994; 191(2):487-494.
  32. Sharifi M, Bay C, Mehdipour M, Sharifi J. Thrombus obliteration by rapid percutaneous endovenous intervention in deep venous occlusion (TORPEDO) trial: midterm results. J Endovasc Ther. 2012; 19(2):273-280.
  33. Sharifi M, Mehdipour M, Bay C, et al. Endovenous therapy for deep venous thrombosis: the TORPEDO trial. Catheter Cardiovasc Interv. 2010; 76(3):316-325.
  34. Skalicka L, Lubanda JC, Jirat S, et al. Endovascular treatment combined with stratified surgery is effective in the management of venous thoracic outlet syndrome complications: a long term ultrasound follow-up study in patients with thrombotic events due to venous thoracic outlet syndrome. Heart Vessels. 2011; 26(6):616-621.
  35. Sundström P, Wåhlin A, Ambarki K, et al. Venous and cerebrospinal fluid flow in multiple sclerosis: a case-control study. Ann Neurol. 2010; 68(2):255-259.
  36. Titus JM, Moise MA, Bena J, et al. Iliofemoral stenting for venous occlusive disease. J Vasc Surg. 2011; 53(3):706-712.
  37. Uberoi R. Quality assurance guidelines for superior vena cava stenting in malignant disease. Cardiovasc Intervent Radiol. 2006; 29(3):319-322.
  38. Van Ha T. Percutaneous management of thrombosed dialysis access grafts. Semin Intervent Radiol. 2004; 21(2):77-81.
  39. Wang X, Zhang Y, Li C, Zhang H. Results of endovascular treatment for patients with nutcracker syndrome. J Vasc Surg. 2012; 56(1):142–148.
  40. Zamboni P, Galeotti R, Menegatti E, et al. A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J Vasc Surg. 2009c; 50(6):1348-1358. e1-3. Erratum in: J Vasc Surg. 2010; 51(4):1079.
  41. Zamboni P, Galeotti R, Menegatti E, et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009a; 80(4):392-399.
  42. Zamboni P, Galeotti R, Weinstock-Guttman B, et al. Venous angioplasty in patients with multiple sclerosis: results of a pilot study. Eur J Vasc Endovasc Surg. 2012; 43(1):116-122.
  43. Zamboni P, Menegatti E, Galeotti R, et al. The value of cerebral Doppler venous haemodynamics in the assessment of multiple sclerosis. J Neurol Sci. 2009b; 282(1-2):21-27.
  44. Zander KD, Staat B, Galan H. May-Thurner Syndrome resulting in acute iliofemoral deep vein thrombosis in the postpartum period. Obstet Gynecol. 2008; 111(2 Pt 2):565-569.
  45. Zhang CQ, Fu LN, Xu L, et al. Long-term effect of stent placement in 115 patients with Budd-Chiari syndrome. World J Gastroenterol. 2003; 9(11):2587-2591.
  46. Zivadinov R, Marr K, Cutter G, et al. Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology. 2011; 77(2):138-144.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. Allen HD, Beekman RH 3rd, Garson A Jr, et al. Pediatric therapeutic cardiac catheterization: a statement for healthcare professionals from the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 1998; 97(6):609-625.
  2. American Academy of Neurology. Practice Guidelines. Available at: http://www.aan.com/go/practice/guidelines. Accessed on May 29, 2014.
  3. FDA News Release: FDA issues alert on potential dangers of unproven treatment for multiple sclerosis. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm303538.htm?source=govdelivery. Accessed on May 29, 2014.
  4. Jaff MR, McMurtry MS, Archer SL, et al.; American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Peripheral Vascular Disease; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011; 123(16):1788-1830.
  5. National Institute for Health and Care Excellence (NICE). Percutaneous venoplasty for chronic cerebrospinal venous insufficiency for multiple sclerosis. March 2012. Available at:  http://www.nice.org.uk/nicemedia/live/13064/58610/58610.pdf. Accessed on May 29, 2014.
  6. National Kidney Foundation Clinical Practice Guidelines and Clinical Practice Recommendations. 2006 updates. Guideline 6. Treatment of Arteriovenous graft complications. Available at: http://www.kidney.org/professionals/KDOQI/guideline_upHD_PD_VA/va_guide6.htm. Accessed on May 29, 2014.
  7. Reekers JA, Lee MJ, Belli AM, Barkhof F. Cardiovascular and Interventional Radiological Society of Europe Commentary on the Treatment of Chronic Cerebrospinal Venous Insufficiency. Cardiovasc Intervent Radiol. 2011; 34(1):1-2.
  8. van Zuuren EJ, Fedorowicz Z, Pucci E, et al. Percutaneous transluminal angioplasty for treatment of chronic cerebrospinal venous insufficiency (CCSVI) in multiple sclerosis patients. Cochrane Database Syst Rev. 2012;(12):CD009903.
  9. Vedantham S, Millward SF, Cardella JF, et al. Society of Interventional Radiology position statement: treatment of acute iliofemoral deep vein thrombosis with use of adjunctive catheter-directed intrathrombus thrombolysis. J Vasc Interv Radiol. 2009; 20(7 Suppl):S332-335. Available at: http://www.guideline.gov/content.aspx?id=25720. Accessed on May 29, 2014.
Websites for Additional Information
  1. National Multiple Sclerosis Society. Chronic Cerebrospinal Venous Insufficiency (CCSVI). Available at: http://www.nationalmssociety.org/research/intriguing-leads-on-the-horizon/ccsvi/index.aspx. Accessed on May 29, 2014.
Index

Endovascular Treatment
Liberation Procedure
Percutaneous Transluminal Angioplasty (PTA)
Percutaneous Venoplasty
Venous Angioplasty

The use of specific product names is illustrative only.  It is not intended to be a recommendation of one product over another, and is not intended to represent a complete listing of all products available.

Document History

Status

Date

Action

Revised08/14/2014Medical Policy & Technology Assessment Committee (MPTAC) review. Medically necessary statement updated to include venous thoracic outlet syndrome. Description, Rationale, Coding and Reference sections updated.
 01/01/2014Updated Coding section with 01/01/2014 CPT changes.
Revised08/08/2013MPTAC review. Position statement updated to consider May-Thurner syndrome as medically necessary. Rationale, Coding and Reference sections updated.
Revised05/09/2013MPTAC review. Position statement updated with additional indications. Description, Rationale, Background, Coding and Reference sections updated.
Reviewed02/14/2013MPTAC review. Description, Rationale and Reference sections updated.
Reviewed02/16/2012MPTAC review. Description, Rationale, Background, References and Index sections updated.
New02/17/2011MPTAC review. Initial document development.